organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Bromo-3-ethoxy-3-[4-(methylsulfanyl)phenyl]-1-[3-(*p*-tolyl)-4-sydnonyl]propan-1-one

S. J. Prathap,^a Satheesha Rai Nooji,^b Balakrishna Kalluraya^b and T. N. Guru Row^a*

^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri, Mangalore 574 199, India Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Received 7 August 2007; accepted 27 August 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 15.2.

In the title compound, $C_{21}H_{21}BrN_2O_4S$, the carbonyl group of the central propan-1-one unit is twisted by 14.7 (4)° from the plane of the cyclic sydnone group ($C_2N_2O_2$) to which it is attached, and an intramolecular $C-H\cdots O$ contact is formed to the exocyclic O atom of the sydnone group. Intermolecular $C-H\cdots O$, $C-H\cdots S$ and $C-H\cdots \pi$ contacts are observed.

Related literature

For related structures see: Abdul Ajees *et al.* (2002); Balamurugan *et al.* (2006); Thamotharan *et al.* (2003). For general literature related to sydnones, see: Earl & Mackney (1935); Narla & Rao (1995); Pillai *et al.* (1993); Satyanarayana & Rao (1995); Sutherland *et al.* (1986).

c = 18.3113 (19) Å

V = 4391.1 (8) Å³

Mo $K\alpha$ radiation

 $\beta = 127.564 \ (1)^{\circ}$

Z = 8

Experimental

Crystal data

C ₂₁ H ₂₁ BrN ₂ O ₄ S	
$M_r = 477.37$	
Monoclinic, C2/c	
a = 24.420(3) Å	
b = 12.3883 (13) Å	

```
\mu = 2.00 \text{ mm}^{-1}
T = 292 (2) K
```

Data collection

21297 measured reflections
4028 independent reflections
2844 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 265 parameters $wR(F^2) = 0.110$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.61$ e Å $^{-3}$ 4028 reflections $\Delta \rho_{min} = -0.20$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

Cg is the centroid of the C15-C20 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4—H4···O2	0.98	2.29	3.093 (4)	139
$C6-H6A\cdots Cg^{i}$	0.97	2.96	3.830	150
$C16-H16\cdots S1^{ii}$	0.93	2.88	3.763 (4)	159
$C21 - H21A \cdots O3^{iii}$	0.96	2.57	3.506 (4)	165

 $0.37 \times 0.19 \times 0.14 \text{ mm}$

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) -x, -y, -z + 1.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1999) and *CAMERON* (Pearce & Watkin, 1993); software used to prepare material for publication: *PLATON* (Spek, 2003).

We thank the Department of Science and Technology, India, for use of the CCD facility under the IRHPA–DST program at IISc.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2231).

References

- Abdul Ajees, A., Karthikeyan, S., Yelamaggad, C. V. & Badami, B. V. (2002). Acta Cryst. E58, 0784–0786.
- Balamurugan, S., Thiruvalluvar, A. & Kalluraya, B. (2006). Acta Cryst. E62, o1126-o1128.
- Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Earl, J. C. & Mackney, A. W. (1935). J. Chem. Soc. pp. 899-903.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Narla, R. S. & Rao, M. N. (1995). J. Pharm. Pharmacol. 47, 623-625.
- Pearce, L. J. & Watkin, D. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
- Pillai, H. G., Safak, C. & Abbasoglu, U. (1993). Arch. Pharm. (Weinheim), 326, 559–561.
- Satyanarayana, K. & Rao, M. N. (1995). J. Pharm. Sci. 84, 263-266.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sutherland, E. P., Marks, G. S., Grab, L. A. & Ortiz de Montellano, P. R. (1986). *FEBS Lett.* **197**, 17–20.
- Thamotharan, S., Parthasarathi, V., Sanyal, R., Badami, B. & Linden, A. (2003). Acta Cryst. E59, 0894–0896.

Acta Cryst. (2007). E63, o3976 [doi:10.1107/S1600536807041931]

2-Bromo-3-ethoxy-3-[4-(methylsulfanyl)phenyl]-1-[3-(p-tolyl)-4-sydnonyl]propan-1-one

S. J. Prathap, S. R. Nooji, B. Kalluraya and T. N. G. Row

Comment

Sydnones are products of dehydration of *N*-nitroso-alpha-amino acids (Earl & Mackney, 1935). Although less toxic (Pillai *et al.*, 1993) than the latter, they remain potent porphyrinogenic (Sutherland *et al.*, 1986) and anti-inflammatory (Satyanarayana & Rao, 1995) compounds. They are also known to scavenge free radicals (Narla & Rao, 1995).

The molecular conformation of the title compound is influenced by π conjugation through the C2—C3 bond and an intramolecular C—H···O hydogen bond, resulting in near coplanarity of the atoms H4, C4, C3, C2, C1 and O2 (torsion angle C4/C3/C2/C1 = -14.7 (4)°) (Fig. 1). The crystal structure exhibits C—H···O intermolecular contacts which define dimeric units (Fig. 2 and Table 1). C—H···S contacts exist between adjacent dimers along the *b*-axis (Fig. 2 and Table 1). Intermolecular C—H··· π contacts are also observed.

Experimental

2,3-Dibromo-1-(3-*p*-tolylsydnon-4-yl)-3-*p*-thiomethylphenyl-propan-1-one (0.01 mol) was dissolved in ethanol by heating and triethylamine (0.05 mol) in ethanol was added. The clear solution was stirred for 24 h then filtered. The filtrate was left to stand for a few days, then the solid was collected by filtration and recrystallized from ethanol to yield the title compound.

Refinement

H atoms were placed geometrically and refined using a riding model with C—H = 0.93–0.98 Å and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at 50% probability for non-H atoms. The dashed line indicates an intramolecular C—H…O contact.

Fig. 2. Packing diagram viewed down the b axis. The dotted lines indicate intermolecular contacts.

2-Bromo-3-ethoxy-3-[4-(methylsulfanyl)phenyl]-1-[3-(p-tolyl)-4-\ sydnonyl]propan-1-one

Crystal data	
$C_{21}H_{21}BrN_2O_4S$	$F_{000} = 1952$
$M_r = 477.37$	$D_{\rm x} = 1.444 { m Mg m}^{-3}$
Monoclinic, C2/c	Melting point: 398-400 K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 24.420 (3) Å	Cell parameters from 1152 reflections
<i>b</i> = 12.3883 (13) Å	$\theta = 2.1 - 25.5^{\circ}$
<i>c</i> = 18.3113 (19) Å	$\mu = 2.00 \text{ mm}^{-1}$
$\beta = 127.564 \ (1)^{\circ}$	T = 292 (2) K
$V = 4391.1 (8) \text{ Å}^3$	Block, yellow
Z = 8	$0.37 \times 0.19 \times 0.14 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer	4028 independent reflections
Radiation source: fine-focus sealed tube	2844 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 292(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -29 \rightarrow 29$
$T_{\min} = 0.526, T_{\max} = 0.760$	$k = -14 \rightarrow 14$
21297 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2 SecondarLeast-squares matrix: fullHydroge
sites $R[F^2 > 2\sigma(F^2)] = 0.040$ H-atom p
 $wR(F^2) = 0.110$ $w = 1/[e^2/F^2)$ H-atom p
 $w = 1/[e^2/F^2)$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0686P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
4028 reflections	$\Delta \rho_{\text{max}} = 0.61 \text{ e} \text{ Å}^{-3}$
265 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.129744 (17)	0.37658 (3)	0.35683 (2)	0.08060 (16)
S1	0.40477 (5)	0.71008 (7)	0.60362 (7)	0.0927 (3)
01	-0.08313 (11)	0.4536 (2)	0.36798 (17)	0.0953 (7)
O2	0.01082 (12)	0.55252 (19)	0.41210 (17)	0.0961 (7)
O3	0.09233 (9)	0.22010 (15)	0.46713 (14)	0.0724 (5)
O4	0.18750 (9)	0.39308 (14)	0.61802 (13)	0.0624 (5)
N1	-0.10169 (14)	0.3481 (3)	0.3577 (2)	0.0883 (8)
N2	-0.04712 (11)	0.2940 (2)	0.38361 (14)	0.0647 (6)
C1	-0.01380 (16)	0.4642 (3)	0.4000 (2)	0.0758 (8)
C2	0.00835 (13)	0.3559 (2)	0.40954 (18)	0.0578 (6)
C3	0.07635 (13)	0.3141 (2)	0.44795 (17)	0.0563 (6)
C4	0.12791 (13)	0.39690 (19)	0.46110 (18)	0.0559 (6)
H4	0.1112	0.4697	0.4586	0.067*
C5	0.19940 (13)	0.38213 (19)	0.55155 (18)	0.0548 (6)
Н5	0.2162	0.3092	0.5546	0.066*
C6	0.24287 (16)	0.3559 (3)	0.7073 (2)	0.0831 (9)
H6A	0.2861	0.3860	0.7251	0.100*
H6B	0.2459	0.2779	0.7070	0.100*
C7	0.23095 (19)	0.3895 (3)	0.7747 (2)	0.1050 (13)
H7A	0.2643	0.3551	0.8329	0.158*
H7B	0.1853	0.3686	0.7523	0.158*
H7C	0.2356	0.4664	0.7824	0.158*
C8	0.25044 (12)	0.46434 (19)	0.56521 (16)	0.0515 (6)
C9	0.24604 (13)	0.5709 (2)	0.58355 (18)	0.0573 (6)
Н9	0.2119	0.5909	0.5888	0.069*
C10	0.29095 (13)	0.6482 (2)	0.59430 (18)	0.0586 (7)

H10	0.2862	0.7197	0.6051	0.070*
C11	0.34295 (14)	0.6192 (2)	0.58894 (18)	0.0586 (7)
C12	0.34768 (14)	0.5135 (2)	0.57035 (19)	0.0658 (7)
H12	0.3821	0.4933	0.5656	0.079*
C13	0.30206 (13)	0.4374 (2)	0.55881 (18)	0.0620(7)
H13	0.3061	0.3662	0.5464	0.074*
C14	0.39791 (19)	0.8274 (3)	0.6521 (2)	0.0859 (9)
H14A	0.4305	0.8803	0.6618	0.129*
H14B	0.4076	0.8097	0.7100	0.129*
H14C	0.3519	0.8560	0.6110	0.129*
C15	-0.05548 (12)	0.1771 (2)	0.37652 (17)	0.0617 (7)
C16	-0.07699 (15)	0.1260 (3)	0.4219 (2)	0.0737 (9)
H16	-0.0848	0.1649	0.4582	0.088*
C17	-0.08666 (15)	0.0150 (3)	0.4120 (2)	0.0773 (8)
H17	-0.1015	-0.0203	0.4419	0.093*
C18	-0.07508 (14)	-0.0435 (3)	0.35973 (18)	0.0717 (8)
C19	-0.05431 (16)	0.0108 (3)	0.31505 (19)	0.0750 (8)
H19	-0.0466	-0.0281	0.2786	0.090*
C20	-0.04448 (16)	0.1203 (2)	0.3223 (2)	0.0725 (8)
H20	-0.0306	0.1554	0.2911	0.087*
C21	-0.0857 (2)	-0.1642 (3)	0.3507 (2)	0.0961 (11)
H21A	-0.0941	-0.1889	0.3928	0.144*
H21B	-0.1246	-0.1818	0.2888	0.144*
H21C	-0.0451	-0.1989	0.3648	0.144*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0936 (3)	0.0849 (3)	0.0608 (2)	-0.01660 (16)	0.04580 (19)	-0.00885 (15)
S1	0.1017 (6)	0.0901 (6)	0.1243 (7)	-0.0290 (5)	0.0884 (6)	-0.0232 (5)
01	0.0724 (14)	0.0963 (18)	0.1152 (18)	0.0283 (13)	0.0562 (14)	0.0039 (14)
O2	0.0999 (16)	0.0629 (15)	0.129 (2)	0.0177 (13)	0.0712 (16)	0.0076 (13)
O3	0.0580 (11)	0.0553 (12)	0.0945 (14)	0.0018 (9)	0.0417 (11)	0.0058 (10)
O4	0.0515 (10)	0.0764 (13)	0.0553 (11)	0.0026 (8)	0.0304 (9)	0.0046 (9)
N1	0.0588 (15)	0.101 (2)	0.099 (2)	0.0147 (15)	0.0451 (15)	-0.0009 (17)
N2	0.0478 (13)	0.0880 (18)	0.0532 (13)	0.0064 (12)	0.0281 (11)	-0.0032 (12)
C1	0.070 (2)	0.078 (2)	0.078 (2)	0.0163 (17)	0.0443 (17)	0.0027 (17)
C2	0.0508 (15)	0.0632 (17)	0.0536 (15)	0.0035 (12)	0.0289 (13)	-0.0003 (12)
C3	0.0546 (15)	0.0545 (17)	0.0545 (15)	0.0007 (12)	0.0306 (13)	-0.0016 (12)
C4	0.0561 (15)	0.0491 (15)	0.0582 (15)	0.0006 (11)	0.0327 (13)	-0.0013 (11)
C5	0.0538 (15)	0.0507 (15)	0.0573 (15)	0.0045 (11)	0.0325 (13)	-0.0017 (11)
C6	0.0639 (18)	0.108 (3)	0.0596 (18)	0.0037 (16)	0.0282 (16)	0.0175 (17)
C7	0.087 (2)	0.159 (4)	0.065 (2)	-0.014 (2)	0.044 (2)	0.009 (2)
C8	0.0480 (13)	0.0513 (15)	0.0514 (14)	0.0019 (11)	0.0284 (12)	-0.0024 (11)
C9	0.0535 (14)	0.0597 (16)	0.0645 (16)	0.0020 (13)	0.0389 (13)	-0.0087 (13)
C10	0.0617 (16)	0.0524 (15)	0.0620 (16)	-0.0011 (12)	0.0378 (14)	-0.0082 (12)
C11	0.0612 (16)	0.0628 (17)	0.0561 (16)	-0.0041 (13)	0.0380 (14)	-0.0048 (13)
C12	0.0649 (17)	0.0696 (19)	0.0795 (19)	0.0005 (14)	0.0525 (16)	-0.0103 (15)

C13	0.0637 (16)	0.0539 (16)	0.0721 (18)	0.0046 (13)	0.0434 (15)	-0.0078 (13)
C14	0.100 (2)	0.0644 (19)	0.093 (2)	-0.0192 (18)	0.058 (2)	-0.0040 (17)
C15	0.0443 (14)	0.081 (2)	0.0505 (15)	-0.0072 (13)	0.0240 (13)	-0.0074 (14)
C16	0.0562 (16)	0.115 (3)	0.0531 (16)	0.0031 (16)	0.0348 (14)	0.0014 (16)
C17	0.0709 (18)	0.097 (3)	0.0656 (18)	-0.0126 (17)	0.0423 (16)	0.0062 (17)
C18	0.0614 (16)	0.095 (2)	0.0432 (15)	-0.0177 (15)	0.0239 (13)	-0.0043 (15)
C19	0.085 (2)	0.083 (2)	0.0588 (17)	-0.0221 (17)	0.0447 (16)	-0.0167 (15)
C20	0.0765 (19)	0.090 (2)	0.0631 (18)	-0.0193 (16)	0.0487 (16)	-0.0108 (15)
C21	0.104 (3)	0.092 (2)	0.073 (2)	-0.032 (2)	0.044 (2)	-0.0061 (19)
Geometric n	arameters (Å. °)					
Br1_C4	<i>an universe (11,)</i>	1 953 (3)	<u> </u>	C10	1.3	77 (4)
BII = C14		1.955 (5)	C9	С10 Ц0	1.5	20
SI-C14		1.767 (3)	C10	C11	0.9.	30 80 (4)
SI = CII		1.707 (3)	C10-	-C11 U10	1.50	20
OI = NI		1.339 (4)	C10-	-110	0.9.	50 76 (2)
01 = C1		1.420 (4)	C11-	-C12	1.5	70 (3)
02 - C1		1.202(4)	C12-	-015	1.5	74 (4)
03 - C3		1.210 (3)	C12-	-п12	0.9.	20
04—C3		1.420(3)	C13-		0.9.	50
04—C6		1.421(3)	C14-	-п14А	0.90	50
N1 - N2		1.296 (3)	C14-	-п14D	0.90	50
C1 = C2		1.417(4)	C14-	-п14С	0.90	50 70 (4)
$C_2 = N_2$		1.300 (3)	C15-	-C20	1.5	70 (4)
$C_2 = C_3$		1.448 (4)	C13=	-C10	1.5	77(4)
$C_3 = C_4$		1.525 (5)	C13-	$-\ln 2$	1.4.	27 (4) 28 (4)
C4 = C3		1.310 (4)	C10-	-01/	1.50	56 (4) 20
C4-H4		0.980	C10-	-H10 C18	0.9.	50 (4)
C_{5}		1.308 (3)	C17=	-018	1.50	50 (4) 20
С3—ПЗ		0.980	C1/=	-п17	0.9.	50 72 (4)
C_{0}		1.489 (5)	C18-	-019	1.5	/3 (4)
C6—H6A		0.970	C18-	-C21	1.5	10 (5)
Со—нов		0.970	C19–	-0.20	1.3	/1 (4)
C7H7A		0.960	C19–	-H19	0.9.	50
С7—П7В		0.960	C20=	-П20	0.9.	50
C^{2} C^{12}		0.900	C21=	-п21А	0.90	50
C8-C9		1.376 (3)	C21=	-н21Б -Н21С	0.90	50
C14—S1—C	11	105 46 (14)	C10-	-С9—Н9	119	1
N1-01-C1		111.0 (2)	C8	С9—Н9	119	1
C5-04-C6		114.0 (2)	C9—	C10—C11	119	.8 (2)
N2-N1-01		105.4 (2)	C9—	С10—Н10	120	.1
N1—N2—C2		114.6 (3)	C11-	-C10-H10	120	.1
N1—N2—C1	5	115.1 (2)	C12–	-C11-C10	119	.0 (2)
C2—N2—C1	5	130.2 (2)	C12–	-C11-S1	116	.8 (2)
02—C1—C2		136.8 (3)	C10–		124	.2 (2)
02-C1-01		119.8 (3)	C13–	C12C11	120	.6 (2)
C2-C1-01		103.5 (3)	C13–	C12H12	119	.7
N2—C2—C1		105.4 (2)	C11–	-C12-H12	119	.7

N2—C2—C3	124.6 (2)	C12—C13—C8	121.3 (2)
C1—C2—C3	129.6 (3)	С12—С13—Н13	119.4
O3—C3—C2	123.8 (2)	C8—C13—H13	119.4
O3—C3—C4	120.8 (2)	S1—C14—H14A	109.5
C2—C3—C4	115.3 (2)	S1—C14—H14B	109.5
C5—C4—C3	112.4 (2)	S1—C14—H14C	109.5
C5—C4—Br1	110.79 (17)	H14A—C14—H14B	109.5
C3—C4—Br1	105.53 (17)	H14A—C14—H14C	109.5
С5—С4—Н4	109.3	H14B—C14—H14C	109.5
C3—C4—H4	109.3	C20-C15-C16	121.1 (3)
Br1—C4—H4	109.3	C20—C15—N2	119.8 (3)
O4—C5—C8	112.0 (2)	C16—C15—N2	119.1 (3)
O4—C5—C4	102.9 (2)	C15—C16—C17	118.2 (3)
C8—C5—C4	112.6 (2)	C15—C16—H16	120.9
O4—C5—H5	109.7	C17—C16—H16	120.9
С8—С5—Н5	109.7	C18—C17—C16	121.9 (3)
С4—С5—Н5	109.7	C18—C17—H17	119.1
O4—C6—C7	109.5 (3)	С16—С17—Н17	119.1
O4—C6—H6A	109.8	C17—C18—C19	118.0 (3)
С7—С6—Н6А	109.8	C17—C18—C21	120.6 (3)
O4—C6—H6B	109.8	C19—C18—C21	121.4 (3)
С7—С6—Н6В	109.8	C20—C19—C18	122.2 (3)
H6A—C6—H6B	108.2	С20—С19—Н19	118.9
С6—С7—Н7А	109.5	С18—С19—Н19	118.9
С6—С7—Н7В	109.5	C15—C20—C19	118.6 (3)
H7A—C7—H7B	109.5	С15—С20—Н20	120.7
С6—С7—Н7С	109.5	С19—С20—Н20	120.7
H7A—C7—H7C	109.5	C18—C21—H21A	109.5
H7B—C7—H7C	109.5	C18—C21—H21C	109.5
C13—C8—C9	117.6 (2)	H21A—C21—H21C	109.5
C13—C8—C5	122.0 (2)	C18—C21—H21B	109.5
C9—C8—C5	120.4 (2)	H21A—C21—H21B	109.5
C10—C9—C8	121.7 (2)	H21C—C21—H21B	109.5
C1—O1—N1—N2	1.5 (3)	C9—C10—C11—C12	1.8 (4)
N1-01-C1-02	179.3 (3)	C9—C10—C11—S1	-178.8 (2)
N1-01-C1-C2	-0.9 (3)	C14—S1—C11—C12	-166.6 (2)
O2—C1—C2—N2	179.7 (4)	C14—S1—C11—C10	13.9 (3)
O1—C1—C2—N2	0.0 (3)	C10-C11-C12-C13	-1.1 (4)
O2—C1—C2—C3	6.3 (6)	S1—C11—C12—C13	179.4 (2)
O1—C1—C2—C3	-173.5 (3)	C11-C12-C13-C8	0.2 (4)
N2—C2—C3—O3	-5.5 (4)	C9—C8—C13—C12	0.1 (4)
C1—C2—C3—O3	166.9 (3)	C5—C8—C13—C12	179.2 (2)
N2—C2—C3—C4	173.0 (2)	C20-C15-C16-C17	0.6 (4)
C1—C2—C3—C4	-14.7 (4)	N2-C15-C16-C17	178.1 (2)
O3—C3—C4—C5	-42.9 (3)	C15—C16—C17—C18	0.4 (4)
C2—C3—C4—C5	138.6 (2)	C16—C17—C18—C19	-1.0 (5)
O3—C3—C4—Br1	77.9 (3)	C16-C17-C18-C21	179.6 (3)
C2—C3—C4—Br1	-100.6 (2)	C17—C18—C19—C20	0.6 (5)
C6—O4—C5—C8	-73.9 (3)	C21—C18—C19—C20	180.0 (3)

C6—O4—C5—C4	164.9 (2)	C16-C15-C20-C19	-1.0 (4)
C3—C4—C5—O4	-58.8 (2)	N2-C15-C20-C19	-178.4 (3)
Br1-C4-C5-O4	-176.61 (14)	C18—C19—C20—C15	0.4 (5)
C3—C4—C5—C8	-179.6 (2)	O1—N1—N2—C2	-1.5 (3)
Br1-C4-C5-C8	62.6 (2)	O1—N1—N2—C15	-178.8 (2)
C5—O4—C6—C7	169.5 (2)	C1C2N1	1.0 (3)
O4—C5—C8—C13	136.9 (2)	C3—C2—N2—N1	174.8 (3)
C4—C5—C8—C13	-107.6 (3)	C1—C2—N2—C15	177.7 (3)
O4—C5—C8—C9	-43.9 (3)	C3—C2—N2—C15	-8.4 (4)
C4—C5—C8—C9	71.5 (3)	C20-C15-N2-N1	120.7 (3)
C13—C8—C9—C10	0.6 (4)	C16—C15—N2—N1	-56.8 (3)
C5—C8—C9—C10	-178.5 (2)	C20-C15-N2-C2	-56.1 (4)
C8—C9—C10—C11	-1.6 (4)	C16—C15—N2—C2	126.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C4—H4····O2	0.98	2.29	3.093 (4)	139
C6—H6A…Cg ⁱ	0.97	2.96	3.830	150
C16—H16···S1 ⁱⁱ	0.93	2.88	3.763 (4)	159
C21—H21A···O3 ⁱⁱⁱ	0.96	2.57	3.506 (4)	165
Summatry adds: (i) $x = 1/2$, $y = 1/2$, $z = 1/2$; (ii) $x = 1/2$, $z = (iii) = x = y = z = 1$				

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x-1/2, y-1/2, z; (iii) -x, -y, -z+1.

